Git Integration Guide | CONFIDENTIAL

GIT INTEGRATION
GUIDE

Version Control • Branching • Sync • Collaboration • Best Practices

Version 1.0 | January 2026

Table of Contents

1. Git Integration Overview
Fabric Git integration enables version control, collaboration, and CI/CD workflows for Fabric items. Connect workspaces to Azure DevOps or GitHub repositories.
1.1 Benefits
1. Version Control: Track changes over time
1. Collaboration: Multiple developers working together
1. Code Review: Pull request workflows
1. Backup: Repository serves as backup
1. CI/CD: Automated deployment pipelines
1. Rollback: Revert to previous versions
1.2 Supported Items
	Item Type
	Supported
	Format

	Notebooks
	✓
	.ipynb

	Reports
	✓
	.pbir + .json

	Semantic Models
	✓
	TMDL folder

	Pipelines
	✓
	.json

	Lakehouses
	Partial
	Metadata only

	Warehouses
	Partial
	Metadata only

2. Setting Up Git Integration
2.1 Prerequisites
1. Fabric workspace with Premium/Fabric capacity
1. Azure DevOps organization or GitHub account
1. Repository with appropriate permissions
1. Workspace Admin role
1. Git integration enabled in tenant settings
2.2 Connecting Workspace to Repository
1. Navigate to workspace settings
1. Select 'Git integration'
1. Choose provider (Azure DevOps or GitHub)
1. Authenticate and select organization
1. Select repository and branch
1. Choose sync direction (import or export)
2.3 Repository Structure
Repository Layout:

/
├── .fabric/ # Fabric metadata
│ └── workspace.json
├── notebooks/
│ ├── ingest_claims.ipynb
│ └── transform_silver.ipynb
├── reports/
│ └── claims_dashboard.pbir
├── semantic_models/
│ └── claims_model/
│ └── definition.tmdl
└── pipelines/
 └── daily_refresh.json

3. Branching Strategy
3.1 Recommended Branch Structure
Branch Strategy:

 main (protected)
 │
 ├── develop
 │ │
 │ ├── feature/add-claims-report
 │ ├── feature/update-etl-notebook
 │ └── bugfix/fix-calculation
 │
 └── release/v1.0

Workspace Mapping:
 - main → Production workspace
 - develop → Development workspace
 - release/* → UAT workspace
3.2 Branch Policies
1. main: Require pull request, no direct commits
1. develop: Require pull request from feature branches
1. feature/*: Developers work here
1. release/*: Create for each release cycle
3.3 Branch Protection Rules
1. Require pull request reviews (minimum 1)
1. Require status checks to pass
1. Require up-to-date branches
1. Restrict who can push to main
1. Require signed commits (optional)

4. Sync Operations
4.1 Commit Changes
1. Make changes in Fabric workspace
1. Open Source control pane
1. Review pending changes
1. Enter commit message
1. Commit to connected branch
4.2 Commit Message Format
Format: [type]: [description]

Types:
 feat: New feature
 fix: Bug fix
 docs: Documentation
 refactor: Code restructuring
 test: Adding tests

Examples:
 feat: Add member enrollment report
 fix: Correct paid amount calculation
 refactor: Optimize claims ETL notebook
4.3 Update from Git
1. Pull latest changes from repository
1. Resolve any conflicts
1. Items updated in workspace
1. Review changes before accepting
4.4 Conflict Resolution
1. Conflicts occur when same item changed in both
1. Choose workspace version or Git version
1. Manual merge not supported in UI
1. Best practice: Sync frequently to minimize conflicts

5. Pull Request Workflow
5.1 Creating Pull Request
1. Push changes to feature branch
1. Create PR in Azure DevOps/GitHub
1. Add description and reviewers
1. Link work items (optional)
1. Wait for review and approval
5.2 Code Review Checklist
1. ☐ Logic correctness verified
1. ☐ Naming conventions followed
1. ☐ Documentation updated
1. ☐ No hardcoded values
1. ☐ Error handling present
1. ☐ Performance considered
5.3 Merging
1. Squash merge for clean history
1. Delete feature branch after merge
1. Sync target workspace from repository
1. Verify deployment in target environment

6. Best Practices
6.1 General Guidelines
1. Commit frequently with meaningful messages
1. Sync workspace before starting new work
1. Use feature branches for all changes
1. Never commit directly to main
1. Review changes before committing
1. Keep notebooks modular and focused
6.2 Workspace Management
1. One repository per project/domain
1. Separate workspaces for dev/test/prod
1. Map branches to environments
1. Use consistent naming across environments
1. Document workspace-branch mapping
6.3 Common Issues
	Issue
	Solution

	Sync conflicts
	Sync frequently, coordinate with team

	Missing items
	Check if item type is supported

	Permission errors
	Verify repository access and workspace role

	Large notebooks
	Split into smaller, focused notebooks

Appendix: Document Information
	Document Title
	Git Integration Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
